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Unit Commitment with Wind Power Generation:

Integrating Wind Forecast Uncertainty and Stochastic

Programming
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Matthew Rocklin‡, Sangmin Lee§, and Mihai Anitescu†,∗

Abstract

We present a computational framework for integrating the state-of-the-art Weather
Research and Forecasting (WRF) model in stochastic unit commitment/energy dis-
patch formulations that account for wind power uncertainty. We first enhance the
WRF model with adjoint sensitivity analysis capabilities and a sampling technique
implemented in a distributed-memory parallel computing architecture. We use these
capabilities through an ensemble approach to model the uncertainty of the forecast
errors. The wind power realizations are exploited through a closed-loop stochastic
unit commitment/energy dispatch formulation. We discuss computational issues
arising in the implementation of the framework. In addition, we validate the frame-
work using real wind speed data obtained from a set of meteorological stations. We
also build a simulated power system to demonstrate the developments.
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1 Introduction

Wind power is becoming worldwide a significant component of the power generation port-
folio. In Europe, several countries already exhibit adoption levels in the range of 5-20%
of the total annual demand. In the U.S. an adoption level of 20% is expected by the
year 2030 [1]. Such a large-scale adoption resents many challenges to the operation of the
electrical power grid because wind power is highly intermittent and difficult to predict.
In particular, unit commitment (UC) and energy dispatch (ED) operations are of great
importance because of their strong economic impact (on the order of billions of dollars
per year) and increasing emissions concerns.

Several UC studies analyzing the impact of increasing adoption levels of wind power
have been performed recently. In [26], a security-constrained stochastic UC formulation
that accounts for wind power volatility is presented together with an efficient Benders
decomposition solution technique. However, the issue of constructing probability distri-
butions for the wind power is not addressed. In [24], a detailed closed-loop stochastic UC
formulation is reported. The authors analyze the impact of the frequency of recommitment
on the production, startup, and shutdown costs. They find that increasing the recommit-
ment frequency can reduce costs and increase the reliability of the system. However, the
authors do not present details on the wind power forecast model and uncertainty informa-
tion used to support their conclusions. In [15, 19], artificial neural network (ANN) models
are used to compute forecasts and confidence intervals for the total aggregated power for a
set of distributed wind generators. The authors observed that forecasting the aggregated
power tends to reduce the overall forecast error because it smoothes out local individual
variations. A problem with empirical modeling approaches, however, is that their pre-
dictive capabilities rely strongly on the presence of persistent trends. In addition, they
neglect the presence of spatio-temporal physical phenomena that can lead to time-varying
correlations of the wind speeds at neighboring locations. Such approaches can thus result
in inaccurate medium and long-term forecasts and over- or under-estimated uncertainty
levels [18, 11], which in turn affect the expected cost and robustness of the UC solution.

In this work, we seek to exploit recent advances in numerical weather prediction (NWP)
models to perform UC/EP studies with wind power adoption. The use of physical models
is desirable because consistent and accurate uncertainty information can be obtained [16].
As an example, consider the missing effects of turbulence during night time, which would
allow one to obtain much tighter uncertainty intervals and lower operating costs. These
physical effects cannot be captured adequately through empirical modeling techniques [8].
On the other hand, the practical capabilities of NWP models are also limited. One of the
major limiting factors is their computational complexity. For instance, performing data
assimilation every hour at a high spatial resolution is currently not practical. In addition,
extracting uncertainty information from NWP models becomes quickly intractable both
from the point of view of simulation time and memory requirements. To give a reference,
a single forecast run for a day ahead with a resolution of about 2 km2 for an area that
covers most of the US state of Illinois takes about 50 hours and produces around 50 GB of
data. The question is: From an operational point of view, how suitable are the forecasting
capabilities of state-of-the-art NWP models? This is an important question because NWP
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models are expected to be used to make real-time operational decisions with important
economic implications. To analyze this issue, we present a computational framework that
integrates the Weather Research and Forecast (WRF) model with a closed-loop stochastic
UC/EP formulation. In particular, we are interested in analyzing computational issues
and to analyze the effects of wind uncertainty on UC/ED operations.

We focus our attention on wind speed forecasting with WRF. Arguably, more so-
phisticated hybrid methods that combine both NWP wind speed forecasts and empirical
models are needed to map the resolution of NWP forecasts down to a specific domain and
to account for system-specific characteristics (e.g., power curves, orography) [16]. Un-
fortunately, most real-time power data of operational wind farms is confidential, so it is
complicated to validate wind power models. We model the uncertainty of the wind speed
forecasts using a sampling technique that generates an ensemble of the future realizations
in the targeted geographical region. The ensembles are obtained by using a scalable imple-
mentation on a distributed-memory parallel computing. In addition, we perform adjoint
sensitivity analyzes that are useful in determining the domain size and control variables in
the weather system. The generated ensembles are sent to a stochastic UC/EP optimiza-
tion problem. We validate the forecast information using real wind speed data obtained
from a set of meteorological stations located in Illinois. We use this forecast information
to perform an economic analysis of the impact of increasing adoption levels of wind power
on a simulated power generation system.

The paper is structured as follows. Section 2 presents details about the WRF model
and uncertainty quantification. Section 3 describes the stochastic unit commitment formu-
lation and a resampling technique used to perform inference analysis. Section 4 presents
numerical validation results for WRF and the closed-loop UC simulations results. We
close with final remarks and directions for future work.

2 Wind Forecast and Uncertainty Estimation Using

WRF

In this section, we describe the procedures used to forecast the wind speed using WRF. The
uncertainty in the wind speed is estimated by using an ensemble approach. We describe
in detail the ensemble initialization and restarting procedures required in an operational
framework. Furthermore, we illustrate a targeted sensitivity analysis approach that can
be used for estimating the simulation domain size and placement, as well as identifying
the variables in the weather system that have a strong impact on the wind forecast.

2.1 Numerical Weather Prediction

The Weather Research and Forecasting model [23] is a state-of-the-art numerical weather
prediction system designed to serve both operational forecasting and atmospheric research
needs. WRF is the result of a multi-agency and university effort to build a highly par-
allelizable code that can run across scales ranging from large-eddy to global simulations.
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WRF has a comprehensive description of the atmospheric physics that includes cloud
parameterization, land-surface models, atmosphere-ocean coupling, and broad radiation
models. The terrain resolution can go up to 30 seconds of a degree, which corresponds to
less than 1 km2.

To initialize the numerical weather prediction simulations, we use reanalyzed fields. In
particular, we use the North American Regional Reanalysis (NARR) data set that covers
the North American continent (160W-20W; 10N-80N) with a resolution of 10 minutes of
a degree, 29 pressure levels (1000-100 hPa, excluding the surface) every three hours from
1979 until present.

2.2 Uncertainty Estimation in Wind Prediction

We use an ensemble of realizations to represent uncertainty in the initial (random) wind
field and propagate it through the WRF nonlinear model. The initial ensemble is obtained
by sampling from an empirical distribution, a procedure similar to the NCEP method
introduced by Parrish and Derber [20, 12]. In the following sections we describe in more
detail the procedures needed for generating the forecast and its uncertainty. We introduced
a similar approach in [28].

Ensemble Initialization

In a normal operational mode, the NWP system evolves a given state from an initial time
t0, to a final time tF . The initial state is produced from past simulations and reanalysis
fields, that is, simulated atmospheric states reconciled with real observations. Because of
the observation sparseness in the atmospheric field and the incomplete numerical repre-
sentation of the atmosphere dynamics, the initial states are not known exactly and can
be correctly represented only in a statistical sense. Therefore, we use an ensemble of
initial conditions to describe the confidence in the knowledge of the initial state of the
atmosphere.

The ensemble of the initial states is centered on the NARR field at the initial time, the
most accurate information available of the atmospheric state. In other words, the ensemble
expectation is exactly the NARR solution. The second statistical moment of the ensemble
described by the covariance matrix V is approximated by the sample variance or pointwise
uncertainty and its correlation. We assume a normal distribution of the uncertainty field
of the initial state, a typical assumption in weather forecasting, and thus the first two
statistical moments give a complete description of the uncertainty.

The initial Nens-member ensemble field xt0
i := xi(t0), i ∈ {1 . . .Nens}, is sampled from

N (xNARR,V):

xt0
i = xNARR + Lξi , ξi ∼ N (0, I) , i ∈ {1 . . .Nens} , LLT = V , Cij =

Vij
√

ViiVjj

, (1)

where C is the correlation matrix and Vii is the variance of variable i. This is equivalent
to perturbing the NARR field with N (0,V). That is, xi = xNARR +N (0,V). In what
follows, we describe the procedure used to estimate the correlation matrix.
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Estimation of the Correlation Matrix

In weather models the correlation structure typically is localized in space. Therefore, in
creating the initial ensemble one needs to estimate the spatial scales associated with each
variable. To obtain these spatial scales, we build correlation matrices of the forecast errors
using the WRF model. These forecast errors are estimated by using the method formally
known as the National Meteorological Center (NMC) method, now NCEP [20, 12, 6],
which is based on starting several simulations staggered in time in such a way that, at any
time, two forecasts are available. In particular, we run a month of day-long simulations
started every twelve hours so that every twelve hours we have two forecasts, one started
one day before and one started half-a-day before.

The differences between two staggered simulations is denoted as dij ∈ R
N×(2×30days),

that is, the difference at the ith point in space between the jth pair of forecasts, where N

is the number of points in space multiplied by the number of variables of interest. We can
then define ǫi as the ith row, each of which correspond to the deviations for a single point
in space. Therefore, the covariance and correlation matrices can be approximated by

Vik ≈ ddT =
∑

j

dijd
T
kj = ǫi · ǫk =









ǫ0 · ǫ0 ǫ1 · ǫ0 · · · ǫn · ǫ0

ǫ0 · ǫ1 ǫ1 · ǫ1 · · · ǫn · ǫ1

· · · · · · · · · · · ·
ǫ0 · ǫn ǫ1 · ǫn · · · ǫn · ǫn









, Cik =
ǫi · ǫk

|ǫi||ǫk|
.

Calculating and storing the entire covariance matrix are computationally intractable.
Consequently, we describe the correlation distance at each vertical level and for each
variable by two parameters representing the East-West and North-South directions. This
can be efficiently estimated by computing several times the correlation along a ray cast
into this vertical level in the East-West direction, fitting a Gaussian to the central peak,
and then averaging among several rays. This approach captures the difference between
East-West and North-South winds due to the Coriolis effect and the earth rotation, and
also faster and larger scale winds in the upper atmosphere. However, we assume that
correlations and winds are roughly similar in nature across the continental U.S. This
process is repeated in the vertical direction such that our results are also correlated level
to level.

To create the perturbations from these length scales, we take a normally distributed
noisy field and apply Gaussian filters in each direction with appropriate length scales to
obtain the same effect as in (1).

Ensemble Propagation through the WRF Model

The initial distribution is evolved through the NWP model dynamics. The resulting
trajectories can then be assembled to obtain an approximation of the forecast covariance
matrix:

xtF
i =Mt0→tF

(

xt0
i

)

+ ηi(t), xt0
i ∼ N

(

xNARR,Vt0
)

, ηi ∼ N (0,Q) , i ∈ {1 . . .Nens}, (2)
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whereMt0→tF (•) represents the evolution of the initial condition through the WRF model
from time t0 to time tF . The initial condition is perturbed by the additive noise η that
accounts for the various error sources during the model evolution. An analysis of the
covariance propagation through the model is given in [28].

In this study, we assume that the numerical model (WRF) is perfect, that is, η ≡ 0,
and given the exact real initial conditions, the model produces error-free forecasts. For
long prediction windows, this is a strong assumption. In this study, however, we restrict
the forecast windows to no longer than one day ahead, thus making this assumption
reasonable.

Accounting for Error Underestimation

In an operational setting, observations become available periodically and can be assimi-
lated in the atmospheric state. In order to account for the new information, the ensemble
needs to be recentered on the new reanalyzed field. In our example, we consider 12-hour
windows between restarts. This simple adjustment corresponds to a correction in the
ensemble expectation. However, the pointwise error estimates given by the ensemble vari-
ance may be over- or underestimated because of simulation errors accumulated along the
model trajectory due to uncertain data and incomplete NWP physics. In other words, the
ensemble statistics may diverge from the true statistics. Therefore, the error levels need
to be re-estimated before each initialization.

One sensible approach used to correct the ensemble statistics is as follows. Consider
the reanalyzed field xNARR as the true state, for computing corrections purposes only,
and require that this reanalyzed solution be on average within one standard deviation
as given by the ensemble spread. This approach corresponds to finding a factor γ that
inflates the ensemble spread about its expectation. Let us consider again the ensemble
xi=1...Nens

∈ R
M and the reanalyzed solution xNARR. Denote by x = 1

Nens

∑Nens

i=1 xi the

sample expectation and by σj =
√

S2
jj, j ∈ {1 . . .M}, the standard deviation, where

S2 = 1
Nens−1

∑Nens

i=1 (xi − x)(xi − x)T is the sample covariance estimation. Then, we have

γ = max (1, min (γσ, 4)) , γσ = meanU,V,T |k=1...5

( |xNARR − x|
σ

)

, (3)

where U , V , and T are the the wind field components and the temperature, that is, the
ensemble variables under consideration. For this comparison, we consider only the first
five layers, which include grid points located below 300 m. The new ensemble is then
inflated by

xi ← x + γ (xi − x) , i ∈ {1 . . .Nens} . (4)

The factor is bounded between one, because the model error is underestimated in our
case, and four to avoid large jumps in the solution and destabilize the NWP model.
Experimentally, however, we noticed that γ ≈ 2, which confirms that this approach tends
to underestimate the uncertainty. This fact is not unexpected because the model error is
not considered.
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2.3 Sensitivity Analysis

Sensitivity analysis is the study of how the model solution is affected by small perturba-
tions in model variables and parameters [2, 3]. We write the sensitivity of the solution

x with respect to parameter pi as Si(t) = ∂x(t)
∂pi

or scaled to be unitless, Si(t) = ∂x(t)
∂pi

pi

x(t)

[29]. In this study, we are interested in the effect that the initial condition at location i,
pi ≡ xt0

i := xi(t0), has at some targeted locations in the final system state xtF := x(tF ).
Therefore, the sensitivity takes the form

Si =
∂xtF

∂xt0
i

xt0
i

xtF
. (5)

Just as the model state xt0 is evolved through M, the sensitivity Si is evolved by the
gradient of the model, also known as the tangent linear model,

Sk
i =

∂M
∂x

(xtk−1 , p)Sk−1 +
∂M
∂pi

(xtk−1 , p) , S0
i =

∂xt0

∂pi

, tk ∈ [t0, tF ] ,

where for brevity we do not include the implicit dependence of M on t. This is useful if
one is interested in what effect a small perturbation at a single source location would have
on the future states, xtk . Alternatively, one could consider the inverse or adjoint process
of observing some target point in the state space at future times and inferring what points
in the initial conditions had a strong influence on the target point.

In this study, we are interested in finding the regions in the initial state to which target
points at later times are most sensitive. Therefore, the sensitivities are computed in terms
of a cost function, which is a function of the state at the final time,

Ψ(xtF (xt0)) ∈ R ,

(

∂Ψ

∂xt0

)T

=

[

∂Ψ

∂xt0
1

· · · ∂Ψ

∂xt0
M

]T

∈ R
M , (6)

where M is the dimension of the initial state vector. Using the chain rule, one obtains

∂Ψ(xtF )

∂xt0
i

=
∂Ψ(xtF )

∂xtF

∂xtF

∂xt0
=

∂Ψ(xtF )

∂xtF
StF

i .

Following [29], the direct sensitivity can be extended for all time indexes

∂Ψ(xtF )

∂xt0
=

∂Ψ(xtF )

∂xtF

∂xtF

∂xtF−1

· · · ∂xt1

∂xt0

∂xt0

∂pi

, (7a)

∂xtk

∂xtk−1

=
∂M
∂x

(xtk−1) ∈ R
M×M , (7b)

∂xt0

∂pi

= ei ∈ R
M ; i ∈ {1 . . .M} . (7c)

Alternatively, by transposing (7), this can be solved by using the adjoint process to evolve
the sensitivity in reverse order:

(

∂Ψ(xtF )

∂xt0

)T

=

(

∂xt1

∂xt0

)T

· · ·
(

∂xtF

∂xtF−1

)T (
∂Ψ(xtF )

∂xtF

)T

.
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Because we start directly from the final state, we need only to evolve forward the system
once and not for each parameter. We further consider the adjoint variables λtk , which
represent the gradients of the cost function with respect to perturbations in the state at

earlier times λtk =
(

∂Ψ(xtF )
∂xtk

)T

. The following equations need to be satisfied [29]:

λtk−1 =

(

∂xtk

∂xtk−1

)T

λtk =

(

∂M
∂x

(xtk−1)

)T

λtk = MT
k−1λ

tk , k ∈ {1 . . . F} ,

λtF =

(

∂Ψ(xtF )

∂xtF

)T

.

Note that we evolve the adjoint variable λtk backwards in time, starting at the final time

and taking steps with the adjoint model MT =
(

∂M
∂x

)T
back to the initial time. As we did

in equation (5), we can also consider the scaled adjoint sensitivity, which can be physically
interpreted as the percentage change in the cost function when the variable xtk

i is changed
1%:

λtk
i =

∂Ψ(xtF )

∂xtk
i

xtk
i

Ψ(xtF )
. (8)

Some practical difficulties arise in obtaining the adjoint model, as discussed in [14, 7]. The
WRF model contains simplified adjoint (WRFPlus-AD) and tangent linear (WRFPlus-
TL) models, which are encapsulated in WRFPLUS [27], and based on a simplified WRF
model that includes only some simple physical processes such as vertical diffusion and
large-scale condensation. This simplified WRF code has been run through a source-to-
source program called Transformation of Algorithm in FORTRAN (TAF) [9] to automat-
ically produce both gradients and adjoints of the gradients.

3 Unit Commitment and Energy Dispatch

The unit commitment problem consists in finding a cost-optimal plan of on/off states
and power levels for a set of distributed power generators. This problem normally is
solved by the system operator each time new price information arrives from the generator
owners (market biding). Depending on the hierarchical structure used (centralized or
decentralized), several variants of the UC problem can be established. Here, we adopt the
traditional centralized approach, in which the system operator has control over the whole
set of generators. The UC problem uses a forecast of uncertain factors such as the load
or, in our case, of wind power generation. Since the forecast is not perfect or disturbances
might arise, an energy dispatch problem is solved in closed-loop to correct the power levels
and satisfy the demands.

3.1 Deterministic Formulation

Many different mathematical formulations of the UC problem exist. They differ mostly
in the constraints used to capture the dynamic performance of the generators (e.g., ramp
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limits) or in the assumed cost models [22]. The UC formulation considered here is based
on the mixed-integer linear programming (MILP) formulation of Carrion and Arroyo [5].
This has the general form

min
pj,k,pj,kνj,k

∑

j∈N

∑

k∈T

c
p
j,k + cu

j,k + cd
j,k (9a)

s.t.
∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] = Dk, k ∈ T (9b)

∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] ≥ Dk + Rk, k ∈ T (9c)

(10)− (17).

The sets T := {1..T}, N := {1..N}, and Nwind := {1..Nwind} represent the time periods,
thermal units, and wind generators, respectively. The demand at each time period k is
denoted by Dk while the reserve requirement is Rk. The power output of the thermal
unit j at time k is given by the continuous variable pj,k while the expected value of the
power output of the wind unit j at time k is given by the fixed parameter E[pwind

j,k ]. The
continuous variable pj,k represents the maximum power output of the thermal unit j at
time k. This variable is introduced in order to model the spinning reserve requirements
which are given by the differences pj,k− pj,k. The units of all the power outputs are MW .
The on/off status of thermal unit j at time k is given by the binary variable νj,k.

The production cost for each thermal unit is approximated by using the linear model
[4]

c
p
j,k = ajνj,k + bjpj,k, j ∈ N , k ∈ T , (10)

where aj and bj are cost coefficients. To model the startup cost cu
j,k we use a staircase

cost of the form

Kt
j =

{

ccj if t > tcoldj + DTj

hcj otherwise
, j ∈ N , t = 1, ..., NDj.

where Kt
j is the cost of interval t of the staircase cost, NDj is the number of intervals of

the staircase cost, and ccj and hcj are cost coefficients. This leads to the following set of
inequality constraints:

cu
j,k ≥ Kt

j

(

νj,k −
t
∑

n=1

νj,k−n

)

, j ∈ N , k ∈ T , t = 1, ..., NDj , (11a)

cu
j,k ≥ 0, j ∈ N , k ∈ T . (11b)

The formulation of the shutdown cost is given by

cd
j,k ≥ Cj

(

νj,k−1 − νj,k

)

, j ∈ N , k ∈ T , (12a)

cd
j,k ≥ 0, j ∈ N , k ∈ T , (12b)
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where Cj is the shutdown cost of unit j. The power output of each unit at each period
must satisfy the bounds

P jνj,k ≤ pj,k ≤ pj,k, j ∈ N , k ∈ T , (13a)

0 ≤ pj,k ≤ P jνj,k, j ∈ N , k ∈ T , (13b)

where P j and P j are the maximum and minimum capacities of unit j, respectively. The
thermal power outputs must also satisfy the ramp-up limits

pj,k ≤ pj,k−1 + RUjνj,k−1 + SUj

(

νj,k − νj,k−1

)

+ P j(1− νj,k), j ∈ N , k ∈ T . (14)

The shutdown and ramp-down limits are

pj,k−1 ≤ pj,k + RDjνj,k + SDj

(

νj,k−1 − νj,k

)

+ P j(1− νj,k−1), j ∈ N , k ∈ T . (15)

Here, RDj , RUj , SDj, and SUj are the ramp-down, ramp-up, shutdown ramp, and startup
ramp limits of unit j, respectively. The minimum up time constraints are

Gj
∑

k=1

(1− νj,k) = 0, j ∈ N (16a)

k+UTj−1
∑

n=k

νj,n ≥ UTj

(

νj,k − νj,k−1

)

, j ∈ N , k = Gj + 1, . . . , T − UTj + 1

(16b)
T
∑

n=k

(

νj,n − (νj,k − νj,k−1)
)

≥ 0, j ∈ N , k = T − UTj + 2, . . . , T , (16c)

where UTj are the minimum up time limits and Gj = min(T, (UTj−U0
j )νj,0) is the number

of periods unit j must be initially ON. The initial state of unit j is denoted by νj,0 and is
a fixed parameter. The minimum down time constraints are formulated as

Lj
∑

k=1

νj,k = 0, j ∈ N (17a)

k+DTj−1
∑

n=k

(1− νj,n) ≥ DTj

(

νj,k−1 − νj,k

)

, j ∈ N , k = Lj + 1, . . . , T −DTj + 1

(17b)
T
∑

n=k

(

1− νj,n − (νj,k−1 − νj,k)
)

≥ 0, j ∈ N , k = T −DTj + 2, . . . , T , (17c)

where DTj denote the minimum down-time limits and Lj = min(T, (DTj − S0
j )(1− νj,0))

is the number of periods unit j must be initially OFF.
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As noted in [5], the above UC formulation requires a significantly smaller number of
binary variables compared to traditional formulations. For instance, in all the formula-
tions reviewed in [10], an extra set of variables is required to identify the units that are
started at the beginning of each period. The proposed formulation also yields an accu-
rate representation of ramping limits and individual contributions to the spinning reserve
requirements. Modeling the ramp limits in a consistent manner is particularly critical
as this simulates the responsiveness of the thermal units in the presence of short-term
fluctuations of the load and wind power [25]. Note that it is possible to use this model
to simulate the performance of the energy dispatch problem by fixing the commitment
variables νj,k.

3.2 Stochastic Programming Formulation

We extend the previous deterministic formulation by considering corrective actions on the
power outputs of the thermal generators to account for the uncertainty in the wind power
outputs. The problem can be cast as a two-stage stochastic programming problem similar
to the ones proposed in [4, 26, 24]. The first stage decision variables are the current thermal
power outputs pj,1, pj,1 and the commitment profiles over the entire planning horizon νj,k.
The power outputs are nonanticipatory (here and now) because it is assumed that the
current wind power outputs pwind

j,1 are known and given by p
wind,true
j,1 . To formulate the

second stage, we consider multiple realizations of the wind power outputs pwind
s,j,k ,and we

define scenario-dependent thermal power outputs ps,j,k and ps,j,k with k > 1 (wait and
see). Note that we do not define second-stage scenario-dependent commitment variables
because we wish to keep the problem computationally tractable. The second-stage power
outputs implicitly simulate the closed-loop response of the energy dispatch problem. The
formulation of the stochastic optimization problem is given by

min
ps,j,k,ps,j,k ,νj,k

1

NS

∑

s∈S

(

∑

j∈N

∑

k∈T

c
p
s,j,k + cu

j,k + cd
j,k

)

(18a)

s.t.
∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k = Dk, s ∈ S, k ∈ T (18b)

∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k ≥ Dk + Rk, s ∈ S, k ∈ T (18c)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (18d)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (18e)

(10)− (15), s ∈ S
(16)− (17). (18f)

The ramp and power limit constraints are defined over each scenario, s ∈ S where we
substitute pj,k ← ps,j,k and pj,k ← ps,j,k. The nonanticipativity constraints for the power
outputs in the first time step are given by equations (18d) and (18e). For the known wind
power outputs we set pwind

s,j,1 ← p
wind,true
j,1 . Note that if the stochastic formulation is able
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to capture the uncertainty of the wind power accurately, the reserve requirements can
be reduced to less conservative levels or even be removed. In other words, the reserves
already incorporate some robustness into the UC problem. We have decided to include
the reserves in order to analyze the interplay between the explicit robustness introduced
by the reserves and the implicit robustness introduced by the stochastic formulation.
This approach has been proposed in [21] and will be used in Section 4 to analyze the
effect of increasing levels of penetration that can be achieved through the stochastic UC
formulation. Load uncertainty has not been considered in this study in order to isolate
the effects of wind power uncertainty. As in the deterministic formulation, one can solve
a closed-loop stochastic energy dispatch problem by fixing the commitment actions.

3.3 Closed-Loop Implementation

To simulate the closed-loop performance of the power system, we consider a rolling-
shrinking horizon approach. The starting rolling time is reset to one each time new
price information is obtained. This period is assumed to be T = 24 hours. At the
starting rolling time, we assume that the wind power forecast becomes available from
WRF for the next 24 hours. At this point, the stochastic unit commitment problem is
solved by using the current wind power outputs pwind

s,j,ℓ ← p
wind,true
j,ℓ and the future forecasts

pwind
s,j,k , k = ℓ + 1, ..., T where ℓ is the current time step. The solution of this problem

gives the commitment profiles νj,k over the 24-hour rolling horizon. At each step inside
the rolling horizon ℓ = 2, ..., T , the horizon is shrunk by one time step T ← T − ℓ and the
stochastic energy dispatch is solved over the remaining horizon with the new true wind
power but the same forecast information. Each of these shrinking horizon problems gives
the current power outputs pj,ℓ and pj,ℓ at current time ℓ. Note that this requires shifting
the nonanticipativity constraints to the corresponding initial times of the shrinking prob-
lems. In addition, it is necessary to shift the initial state of the thermal units and the
corresponding minimum up- and down-time parameters Gj and Lj .

3.4 Inference Analysis

In the above stochastic formulation, the wind power outputs are assumed to have a prob-
ability distribution P. In most stochastic optimization studies this distribution is assumed
to be known. As seen in Section 2, obtaining this distribution is part of the modeling task.
Since many different forecast models (autoregressive, ANN, physics based) can be used to
construct the error distribution, there is not a unique distribution. From a practical point
of view, what we expect from a distribution is that it is able to encapsulate the actual re-
alizations of wind power and it has tight confidence intervals. The encapsulation property
ensures robustness of the solution (it satisfies the load in each possible scenario) while
tightness ensures that the cost penalty incurred (with respect to the perfect information
cost) is not too strong. As explained in Section 2, we model the wind power distribution
by propagating an assumed Gaussian distribution of the initial state conditions through
the WRF model. Because of the complexity of the model, we are limited to a single batch
of a few (less than a hundred) weather samples. From a stochastic optimization point of

12



view, this is an issue because we are not solving the problem with the full distribution.
Nevertheless, we want to at least get an idea of how sensitive the costs are to changes
in the random information. In addition, we might want to compute the cost variance
or confidence intervals. Performing inference analysis through sampling techniques [13]
would require resampling many times the initial state distribution and propagating each
sample through the WRF model. This approach is not practical from a computational
point of view. To avoid this limitation, we next present a heuristic resampling technique.

Weighted Average Sampling

To create new wind speed time series from the existing WRF realizations, we express a
new realization as a weighted average of the available ones. Suppose the WRF model is
x(t) =M(t, x(0)), where x(t) is the state vector at time t. If we are given NS samples xj

and we can write x(0) =
∑

j∈S wjxj(0), the propagation of x(0) is x(t) = M(t, x(0)) =
M(t,

∑

j∈S wjxj(0)). Assuming the variance of the samples is small, we can write xj(0) =
x̄(0) + ǫj(0). We can justify the computation of weighted averages of the time series
because

x(t) = M
(

t, x̄(0) +
∑

j

wjǫj(0)

)

≈ M(t, x̄(0)) +
∑

j

wj

∂M
∂x

(t, x̄(0))ǫj(0)

=
∑

j

wj

(

M(t, x̄(0)) +
∂M
∂x

(t, x̄(0))ǫj(0)
)

≈
∑

j

wjM
(

t, x̄(0) + ǫj(0)
)

=
∑

j

wjM(t, xj(0))

=
∑

j

wjxj(t).

In other words, the weighted average of the time series approximates, to first order, the
nonlinear propagation of weighted samples of the initial conditions. Inspired by kernel
density estimation, the weights are chosen to be Gaussian near the unit vectors in the
standard basis on a hyperplane

∑

j∈S wj = 1 in the w space.

Computation of Confidence Intervals

The two-stage stochastic UC problem with fixed binary variables can be expressed in the
following abstract form :

min
x≥0

cT x +Q(x), s.t. Ax = b. (19)
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Here, x are the first-stage decision variables, and Q(x) = E [Q(x, ξ)] is the second-stage
cost. We assume that the probability distribution P of ξ has finite support; that is, ξ has
a finite number of scenarios {ξ1, ..., ξK} with probabilities pk ∈ (0, 1). Consequently, we
can write Q(x) = 1

K

∑K

k=1 Q(x, ξk), where

Q(x, ξk) = min
yk≥0

qT yk, s.t. Tx + Wyk = ξk, k = 1, ..., K. (20)

Here, yk are the second-stage decision variables, and ξk are the realizations of the wind
power outputs. K is a very large number so it is impractical to solve the stochastic
problem exactly. Therefore, given a fixed number of realizations NS << K, we solve the
approximate problem,

min
x≥0

cT x +
1

NS

NS
∑

k=1

Q(x, ξk), s.t. Ax = b. (21)

We seek to estimate lower and upper bounds of the true optimal solution v∗ (using the
entire set of K realizations) and their corresponding confidence intervals. A lower bound
can be estimated generating j = 1, ..., M batches, each of size NS and solve (21) for each
batch. If we denote as v̂

j
NS

the optimal cost of each SAA problem, we can estimate the
lower bound as

LNS ,M =
1

M

M
∑

j=1

v̂
j
NS

. (22)

The sample variance estimator is given by

s2
L(M) =

1

M − 1

M
∑

j=1

(

v̂
j
NS
− LNS ,M

)2
, (23)

and the (1− α) confidence intervals of the lower bound are

[

LNS ,M −
zαsL(M)√

M
, LNS ,M +

zαsL(M)√
M

]

, (24)

where zα satisfies P {N (0, 1) ≤ zα} = 1−α. To estimate the upper bound, we pick a given
value for the first-stage variables x̂ and generate a new set of j = 1, ..., M batches of data.
We then evaluate (19), leading to f̂

j
N(x̂). Note that each evaluation involves the solution

of the second-stage problem (20). As before, the upper bound confidence intervals are
given by

[

UNS ,M −
zαsU(M)√

M
, UNS ,M +

zαsU(M)√
M

]

, (25)

with UNS ,M = 1
M

∑M

j=1 f̂
j
NS

and s2
U(M) = 1

M−1

∑M

j=1

(

f̂
j
NS
− UNS ,M

)2

.
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4 Integrative Study

In this section we integrate the wind speed forecasts produced by WRF by following the
procedure described in Section 2 with the stochastic unit commitment/energy dispatch
formulations described in Section 3.

4.1 Wind Forecast and Uncertainty Quantification

We begin with a description of the weather model setup and illustrate its performance in
a parallel environment that mimics a real operational setup. We use the WRF model to
forecast the wind speed in a specific region that covers the state of Illinois. We set up a
computational nested domain structure including a high-resolution sector that covers the
target area and two additional domains of larger coverage but lower resolution. The parent
domains supply the boundary conditions for the nested ones, and the largest domain has
prescribed boundary conditions from coarser simulations. This setup is illustrated in
Figure 1. A similar setup with one coarse domain is described in [28].

ID Size Grid

#1 130 × 60 32 km2

#2 126 × 121 6 km2

#3 202 × 232 2 km2
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Figure 1: Size and spatial resolution of the computational domain.

To simulate realistic conditions, we generate six ensemble data sets, each containing the
predicted wind speed for Illinois region corresponding to domain # 3 (the innermost) in
Figure 1. Each ensemble has Nens = 30 members. The data is sampled every 10 minutes,
and each ensemble is evolved one day ahead. The starting time of the experiment t0
corresponds to June 1st, 2006, 6:00 PM CT (local time), with each data set restarted from
the reanalyzed solution at time t0 +(k−1)× (12 hours) with k = 1, . . . , 6. In other words,
each data set is started at the revalidation time with 12-hour increments.

Validation Using Wind and Temperature Data Measurements

We validate the WRF model against observations at several weather stations throughout
Illinois. The weather station observations were obtained from the National Climatic Data
Center (NCDC), and their locations are illustrated in Figure 2.b.
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In Figure 3 we show the wind speed (±2σ) and temperature (±3σ) predictions and
measurements for Peru and Chicago, IL, identified as rotated triangles in Figure 2.b. Each
ensemble evolves for 24 hours and new ones are started every 12 hours; therefore, the last
half of each forecast overlaps with a more recent one. In our illustrations we show the
most recent results on top.
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a) Wind turbine location and ID b) Location of weather stations

Figure 2: Windmill farms and weather station (triangles) locations in Illinois.

We remark that the wind speed measurements obtained from NCDC are given in
miles per hour rounded to the nearest integer. Doing so has the unfortunate effect of
diminishing the wind variability and yielding more pessimistic than real validation results.
The temperature measurements are also rounded, but this effect is less visible. In this test
case, however, the temperature is relatively easier to predict whereas the wind typically
has a wider variability and is much more difficult to predict accurately. This point is
enforced by the correlogram for the temperature and wind speed at Peru, IL shown in
Figure 6. The uncertainty intervals as given by WRF capture the trends very well, with
few exceptions. Similar results are obtained at the other weather stations. These results
show that WRF can be used to make accurate wind predictions and provide confidence
intervals.

Validation at Wind Farm Locations in Illinois

We present validation results at 12 active wind-farms in the state of Illinois. The locations
were obtained from http://www.windforillinois.org; the coordinates are summarized
in Table 1 and are displayed in Figure 2. Currently, the power produced by wind turbines
depends on the wind speed at elevations of about 40-120 meters. The wind speed fields at
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Figure 3: Wind speed (±2σ) and temperature (±3σ) predictions and measurements (o)
for Peru and Chicago, IL. The vertical dashed lines denote the beginning of a new 24-
hour prediction window; different colors are used to indicate ensembles started at different
times.

these heights can be extracted from WRF. Unfortunately, the NCDC data available for
validation is reported only at 10 meters. Obtaining wind speed data at higher altitudes
requires access to proprietary databases of operational wind farms. Consequently, we
provide validation results only at 10 meters.

The wind speed fields at 10 and 100 meters above the ground for three consecutive days
of June 2006 are presented in Figures 4 and 5, respectively. The order of the windows
goes from left to right and coincide with the wind-farm location numbering shown in
Figure 2. From Figure 4, we note that the WRF realizations are able to capture the
general trends of the actual observations. In addition, they are able to encapsulate the
observations. Note, however, that the wind speed is relatively low at this height. The
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Table 1: Location of wind farms in the state of Illinois. Their location is also displayed
on the state map in Figure 2.

ID Latitude ◦N Longitude ◦W ID Latitude ◦N Longitude ◦W
1 42.467032 89.88327 7 41.333256 90.503311
2 41.648256 90.078578 8 41.453728 89.673843
3 41.089702 89.623718 9 41.199323 88.704987
4 41.310953 89.637623 10 40.311996 89.467163
5 41.230315 89.577026 11 39.44017 89.629029
6 41.725462 89.051399 12 39.617987 90.845089

maximum average is around 6-7 meters per second. From Figure 5 we see that the wind
speeds increase significantly at 100 meters, reaching a maximum average of around 10
meters per second. Note also that the uncertainty levels increase at this height as a result
of the larger range and variability. This increase is also expected because most of the
wind speed data assimilated in WRF is near ground level.

In Figure 7 we show the spatial correlations of the wind speed for wind farm #8 on June
5, 1:50 AM, as inferred from the 30-member WRF ensemble simulation. In this analysis,
we have observed that the wind speed is highly correlated over a wide geographical region
and that it has a nontrivial spatial structure. This observation is confirmed by comparing
Figures 10 and 2. Here, we can see that the wind speed realizations for wind farms #2, 3,
4, and 8 are strongly correlated, as predicted by the correlation mapping. The correlation
information is highly valuable, because it can augment the temporal uncertainty analysis
by identifying the locations that are likely to experience a similar behavior. This can
be used, for instance, to identify faulty sensors at certain locations or to aggregate the
performance of multiple turbines in a consistent manner.

Adjoint Sensitivity Analysis Results

In this section we describe the procedure to estimate the sensitivity of the wind speed
Ψ =

√
U2 + V 2, where U and V are the West-East and South-North wind components,

respectively. The initial adjoint values at the final time is therefore given by

λtF =
∂Ψ

∂• =
•√

U2 + V 2
, • = {U, V } , (26)

which is the derivative of the wind speed (or cost function) at the final time, as discussed
in Section 2.3. The initialization with the scaled cost function is then

λtF =
∂Ψ

∂•
•
Ψ

=
•√

U2 + V 2

•√
U2 + V 2

=
(•)2

U2 + V 2
, • = {U, V } . (27)

The scaled version is useful because it allows us to compare sensitivities in model states
with different units of measure; for instance, wind speed and temperature.

To illustrate the results that can be obtained from such an analysis, in Figure 8 we show
the wind speed sensitivity in a region in northern Texas with respect to the wind speed, 6
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Figure 4: Wind speed realizations for 12 wind farm locations in Illinois at 10 m and
observations (dots) at nearest meteorological stations. Vertical lines represent beginning
of day (12:00 AM).

and 12 hours before the final (target) time. The higher the value, the more sensitive is the
final-time target solution to the corresponding (past) state. In other words, the sensitivity
at the final time (27) is propagated backwards 6 and 12 hours, and this approach gives a
measure of influence of the initial condition on the final target state 6 and 12 hours ahead.
A similar procedure was used to determine the size and shape of the finest domain (#3
in Figure 1).

The adjoint consistency can be tested by using finite-difference approximations or the
linear algebra properties of the transpose operator, as described below.

Finite Differences. To perform this test, we perturb the initial state at some point
x̂t0

i ← xt0
i + ε and look at the effect caused in the cost function Ψ at some nearby point

Ψ(x̂tF
j )−Ψ(xtF

j ). The finite difference
Ψ(x̂

tF
j )−Ψ(x

tF
j )

ε
can be compared directly to the adjoint

sensitivity of the same cost function. We found that our results converge with decreasing
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Figure 5: Wind speed realizations for 12 wind farm locations in Illinois at 100 m. Vertical
lines represent beginning of day (12:00 AM).

ε. The results are shown in Table 2.

Table 2: Convergence of the adjoint solution to the finite differences approximation.
ε [%] 15 3 1

Error [%] 21 7 4

TL-AD Test. The second test was proposed by [17] and is based on the following
observation:

(

Mxt0
)T (

Mxt0
)

=
(

xt0
)T

MT Mxt0 =
(

xt0
)T

MT xtF =
(

xt0
)T

λt0 , (28a)

=
(

xtF
)T

xtF , (28b)

where M = ∂M
∂x

. Thus, from (Mxt0)T (Mxt0) we can evolve the initial state xt0 forward to
xtF twice using the tangent linear model (M) and then take the inner product (28a), or we
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field for wind farm #8 on June 5, 1:50 AM,
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Figure 8: The wind speed sensitivity in a northern Texas region (solid line caret) with
respect to the wind speed with 6 hours zoomed-in (left) and 12 hours (right) before the
final time accumulated on all height levels.

can evolve it forward once and then use the adjoint operator (MT ) to evolve it backward
and take its inner product with xt0 (28b). These two expressions should evaluate to the
same value within roundoff. As a test, we ran WRFPlus in TL and AD mode on an initial
state for a two-hour simulation forth and back. We obtained the same value to within a
factor of 10−5, a deviation that can be accounted for by the slightly different paths that
the tangent linear and adjoint operators take as they integrate because of chaining in
multiple operators and the differences between the full nonlinear model and the simplified
model.
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Implementation Considerations

WRF is an open-source weather and climate model available to the research community.
In this study we used the latest version available at the time of preparing this manuscript;
that is, version 3.1 [23]. In what follows we provide some implementation considerations
arising during the execution of WRF in an operational setting.

The ensemble approach taken for estimating the uncertainty in the weather system is
highly parallelizable because each scenario evolves independently through WRF, once the
initial ensemble has been generated. The most expensive computational element is the
evolution of each member through the WRF system. We therefore consider a two-level
parallel implementation scheme. The first level is a coarse-grained task decomposition
represented by each individual member. A secondary finer-grain level consists in the
parallelization of each individual member. This approach yields a highly scalable solution.

The simulations were performed on the Jazz Linux cluster at Argonne National lab-
oratory. Jazz has 350 compute nodes, each with a 2.4 GHz Pentium Xeon with 1.5 GB
of RAM. The cluster uses Myrinet 2000 and Ethernet for interconnect and has 20 TB
of on-line storage in PVFS and GFS file systems. Our actual running times for a single
24-hour job on Jazz are illustrated in Figure 9. We note that solution times can vary
by a factor of 2 throughout the day. Consequently, to make this run a one hour of real
time, one would need on the order of 500 CPUs or cores of a similar power. Additional
computational power may be required to compensate for increasing cost of disk access.
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Figure 9: Scalability of WRF on the compute cluster Jazz for 24 hours (extrapolation
based on 2-hour runs).

4.2 Economic Study Unit Commitment/Energy Dispatch

Because of the lack of detailed design data of thermal and wind power units in the open
literature, we have constructed an artificial simulation study. We first describe the thermal
and wind power assumptions used and then discuss our results from the simulation.
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Power System Description

The thermal power system specifications used in this work are based on those reported in
[5]. The system contains a total of 10 thermal generators with a total installed capacity of
1662 MW. The peak demand is 1326 MW. The ramp limits of the units are not reported,
so we have assumed them to be 50% of the corresponding maximum capacity. The reserve
requirements are assumed to be 10% of the demand. To simulate increasing level of wind
power adoption, we increase the number of wind turbines at each of the 12 wind farm
locations in Illinois.

Results

To generate wind power forecasts, we propagate the real wind speed observations and
the realizations from WRF at a height of 10 meters through a typical wind power curve
with a maximum capacity of 1.5 MW. The nominal curve has a cut-in speed of 3 meters
per second and reaches the rated capacity at 12 meters per second. The wind speed
observations, forecast and ensembles used are summarized in Figure 4. As previously
mentioned, we used the height of 10 meters because the NCDC data used for validation
is only reported at this level. In addition, most wind power data is proprietary and
difficult to obtain. As expected, the wind speeds are relatively low at this level, thus
leading to small power outputs. Instead of using the wind speed WRF forecasts at 100
meters, we have kept the 10 meters WRF forecasts and observations and mapped these
using a shifted power curve obtained by displacing the nominal cut-in speed from 3 to
2 meters per second. With this, the rated capacity is reached at around 11 meters per
second. This strategy allowed more realistic validation results for wind power compared
to linear interpolation of the wind speed observations. The resulting artificial wind power
realizations and observations are presented in Figure 10. The order of the windows goes
from left to right and coincides with the wind farm location numbering shown in Figure
2. The wind power distribution is clearly affected by the nonlinear structure of the power
curve. The WRF realizations are able to encapsulate the actual power observations. The
largest differences are observed at the beginning of the third day. Unfortunately, the
rounding of the NCDC wind speed data significantly increases the errors when mapped
through he power curve. Nevertheless, in general, the overall trends are captured fairly
accurately. We emphasize that the uncertainty structure of the wind power forecasts
strongly depends on the particular characteristics of the installed system.

We have run the closed-loop UC/ED system assuming a rolling horizon and a forecast
frequency of 24 hours. The energy dispatch problem runs every hour. A total of 30 WRF
realizations are used to solve the stochastic problem. The resulting MILP problems are
implemented in AMPL and are solved with the CBC solver from the COIN-OR repository.
The MILP contains 38,651 variables from which 240 are binary, 783 equality constraints,
and 40,747 inequality constraints. CBC is used with its default algorithm settings but in
multi-thread mode with four threads. The average solution time for the full UC problem
in a quad-core Intel processor running Linux is about 9 minutes in cold-start mode. The
solution time of the energy dispatch problem is less than 10 seconds.
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Figure 10: Wind power realizations for 12 different wind farm locations in Illinois at
10 m and observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day (12:00 am).

The results for the 20% penetration study are presented in Figures 11-13. In Figure
11, we present the optimal commitment profiles for the closed-loop optimizer and for the
perfect information problem. As can be seen, the profiles are similar but the generators
tend to be ON more with the stochastic policies. We note that the optimal cost of the
stochastic strategy over three days of operation is only about 1% larger than with the
perfect information strategy. In Figure 12, we present the policies for the thermal power
levels. We notice that the sensitivity of the power levels of some units to the uncertainty
of the wind power is very small. Generators #2 and #5 are the most sensitive, while
generators #3 and #4 exhibit no sensitivity. We have found that the sensitivity levels
depend strongly on the design characteristics and prices of the generators.

We also performed an inference analysis using the weighting sampling strategy of Sec-
tion 3.4 for the first day of operation using M = 30 different batches. The upper bound
mean was found to be UNS ,M = $474, 064 with variance s2

U(M) = 1, 082$2. The lower
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bound mean was found to be LNS ,M = $474, 317 with variance s2
L(M) = 1, 656$2. Both

variances are less than 0.25% of the mean cost. This value indicates that 30 WRF real-
izations are sufficient to estimate the optimal cost. We have also found that updating the
WRF forecast every 12 hours instead of every 24 hours does not bring important economic
benefits. The explanation resets with the forecast trends presented Figure 3. Note that
the forecasts are not improved significantly at the middle of the day, perhaps because mea-
surements assimilated during the day are not as informative as those assimilated during
night, where the wind currents tend to be stronger.

In Figure 13 we present the profiles of total aggregated demand, thermal power, and
wind power. The thin gray lines represent the scenarios foreseen by the stochastic opti-
mizer at the beginning of each day. As can be seen, the realizations are able to encapsulate
the actual closed-loop profiles (solid lines) during the first two days. As a result, the opti-
mizer is always able to satisfy the load, even for an adoption level of 20%. In the third day,
however, we see a significant mismatch between the forecasted wind power and the realized
one in the first 12 hours of operation. This directly translates to a mismatch in the planned
closed-loop behavior of the thermal power levels. In this case, the reserves are sufficient
to satisfy the load. Nevertheless, this result is important to illustrate that modeling the
probability distribution in an adequate manner is critical. This effect could potentially be
ameliorated by inflating the initial conditions of the WRF ensembles. However, this effect
cannot be predicted a priori, and computational limitations preclude running the WRF
model more frequently to capture this mismatch. This situation suggests that a higher
frequency forecaster (e.g., autoregressive model) or an artificial variance corrector should
be added to the system. How to connect this short-term forecaster with WRF is still not
clear.

We found that a purely deterministic optimizer (using only the WRF forecast mean)
is not able to sustain adoption levels of more than 10% even with the allocated reserves.
We also observed that increasing the adoption levels increases the start-up and shutdown
costs, but these are negligible (on the order of $10,000) with respect to the total production
costs.

5 Conclusions and Future Work

We presented a computational framework for the integration of the state-of-the-art Weather
Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch
formulations that account for wind power uncertainty. We extended the WRF model
with a sampling technique implemented in a distributed-memory parallel computing ar-
chitecture and perform an adjoint sensitivity analysis on the wind speed. We have used
the uncertainty information in a stochastic unit commitment formulation to analyze the
impacts of wind power uncertainty on the system’s economic performance. In addition,
we have developed a weighting-average resampling strategy that avoids expensive WRF
simulations to perform inference analysis. Our numerical experiments indicate that it is
relatively costly to generate forecast and uncertainty information from WRF at a lower
frequency than 12 hours. We have not accounted for the cost of assimilating observations
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Figure 11: Closed-loop commitment profiles for thermal units. Solid thin line is optimal
profile (with perfect information); solid thick line is stochastic UC solution.

in the model. However, given the power of current compute clusters, this does not seem
to be a limiting factor.

Our simulated stochastic commitment study indicates that using WRF forecasts and
uncertainty information is critical to achieve high adoption levels with minimum reserves.
In this study, however, we have not found significant benefit of updating the WRF forecasts
every 12 hours, as opposed to 24 hours. The benefits of updating the forecast more
frequently is an issue of ongoing research. One must keep in mind, however, though
the high computational cost attached to such frequent updates. Our study illustrates a
real operational setting, and points to several issues and limitations that are not present
in idealized experiments using artificial uncertainty information. Our inference strategy
shows that a moderate (N=30) number of WRF realizations is sufficient to produce a
good estimate of the optimal cost.

As future work, we are interested in developing techniques to generate forecasts at a
higher resolution. In addition, we are interesting in generating wind-power forecast mod-
els by fusing WRF wind speed forecasts and operational wind-power data. In addition,
we are interested in exploring real-time optimization strategies to reduce the on-line com-
putational times. We are also interested in exploring the interplay between wind power
uncertainty and the power system design and price characteristics. We will extend our
formulation to consider detailed network constraints where the effects of wind power are
more pronounced.
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Figure 12: Closed-loop thermal profiles for thermal units. Solid thin line is optimal profile
(with perfect information), solid thick line is stochastic UC solution, and thick gray lines
are planned scenarios at the beginning of each day.
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